

Dynamic Job Ticket Mechanism
C.J. Sonnenberg and T.K.J. Willems

Océ Technologies B.V., Research & Development
The Netherlands

Abstract

In a digital document production workflow customers
have to complete a digital job ticket, usually without
proper guidance. Errors can be introduced easily which
leads to increased turn around time, damaged customer
relation, wasted material or time.

To prevent such errors we propose a dynamic job
ticket approach. This approach includes a description of
all ticket constraints in a separate XML file. Based on
the specified constraints, the user interface adapts to each
user selection. In fact the user interface guides the user
through the parameter space, preventing contradictions.

Introduction

The Internet enables customers to deliver their jobs
digitally to their document service providers. Typically a
customer is presented with a Web user interface in which
numerous features for print, scan or archive services are
offered. Each feature may include multiple selectable
options, such as media type and duplex, but the selection
of one feature may preclude options of another feature.
For example ‘transparent’ precludes ‘duplex’.

To handle this kind of ambiguities, the constraints of
a ticket are described in an XML file. XML is a simple,
open, non-proprietary, widely accepted data exchange
format. Important standards like JDF (Job Definition
Format)3 are based on this format. Available techniques
(e.g. schema’s, DTD) validate XML documents, but omit
the validation of semantic dependencies between XML
elements. Promising initiatives like XForms5 and
XincaML4 might be helpful to tackle this problem.

In our approach we model in XML the capabilities
of the document service provider more closely by
introducing constraints. A combination of a behavioral
design pattern and XML technology lets the user
interface adapt to each user selection. More specific, the
user interface guides the user through the parameter
space, preventing contradictions.

Design Pattern

The architecture is based on the Model-View-Controller
(MVC) design pattern.2 The pattern consist of three
modules (see figure 1).

Model: The model is a hierarchical decomposition of all
services, features and options offered by the service
provider. In addition the dependencies and constraints
between features and options on different branches of the
option tree are modeled. The modeled constraints include

context help; an explanation of the constraint to the user
in natural language.

Controller: The controller manipulates the model
according to the selections of the user. The controller
preserves the integrity of the model by removing
conflicting features and options.

View: This component creates the presentation markup
of the model.

Controller View

User

Model

selects

updates manipulates

sees

Figure 1. Components of the architecture

XML Technology

This section links the components of the architecture
with the technology (see figure 2).

Http-request

Xslt processor Xpath processor

Http-response

XSLT

XML

ASP.NET

Browser

Webserver

Figure 2. XML technology used in the components

DPP2003: IS&Ts International Conference on Digital Production Printing and Industrial Applications

92

Model: The specification of features and their options are
located on different branches of an XML tree.
Dependencies and constraints between features and
options are added to this XML document. The next
section elaborates on this issue.

Controller: The user interacts with the system via a Web
page displayed in the browser on the user’s computer.
Selecting an option of a feature triggers a http-request to
the Web server. The Web page reduces the model with
all options from features that are conflicting with the
user selection. The dynamic server page uses XPath5
expressions to query and DOM5 to manipulate the XML
document.

View: An XSLT style sheet transforms the model into
HTML format for presentation in the browser.

Modeling Constraints in XML

The XML document contains a hierarchical structure of
the features and a list of constraints.

<option id=”mediaID” name=”Media”>
 <option id=”mediatypeID” name=”Type”>
 <option id=”transparentID” name=”Transparent” />
 <option id=”paperID” name=”Paper” />
 </option>
</option>
…
<option id=”finishingID” name=”Finishing”>
 <option id=”duplexID” name=”Duplex”>
 <option id=”yesID” name=”Yes” />
 <option id=”noID” name=”No” />
 </option>
</option>

Listing 1. XML fragment of features and options

The hierarchical structure represents the superset of

possible features. The example in listing 1 shows an
XML representation of the features ‘duplex’ and
‘transparent’. All tags in the structure are of the type
option. The id attribute uniquely identifies each option.
The name attribute is used to represent the option in the
user interface.

<error id=”transparent_duplexID”>
 <desc>Select either duplex or transparent.</desc>
 <exist>
 <choice option=”transparentID” />
 <choice option =”yesID” />
 </exist>

</error>

Listing 2. XML fragement of a constraint

Listing 2 contains an XML fragment, which is an

example of a constraint. Two types of constraints are
identified: error and warning. Each constraint consists of

a user friendly description and a predicate. The user-
friendly description guides the user. The predicate
defines when the constraint will be applied. In this
example the predicate evaluates to false when both
options, identified by their id attribute, would be
selected. Mathematically the predicate can be expressed
by:

A ⇒ ¬ B ∧ B ⇒ ¬ A (1)

where A and B are both options.
Intuitively these constraints can be applied in

situations where features have discrete options as in the
example. Features with contiguous values, such a
number of copies, can be dealt with by attaching values
to ranges e.g. [0..10].

Conclusion

The proposed job ticket approach allows for a better
modeling of the capabilities of the document service
provider. The behavior of the application eases the
specification of job tickets by showing the user only the
meaningful options. The dynamic ticket explains the
potential consequences of the selection of options to the
user. The document service provider receives tickets
with less or no errors.

The architecture of the application enables run-time
configuration of features and constraints and decouples
the presentation and the application logic.

References

1. Andre Tost, Creating presentation markup using XML,
XSLT and the MCV design pattern, http://www.ibm.com.

2. Erich Gamma et al., Design Patterns, Addison-Wesley,
1995.

3. JDF, Job Definition Format, http://www.cip4.org
4. XincaML, http://www.alphaworks.ibm.com/tech/xincaml.
5. W3C, http://www.w3.org.

Biographies

Kees Jan Sonnenberg was born in 1974 in Zwolle, the
Netherlands. He received his B.S. degree in Chemistry
and Computer Science. Currently he is a graduate student
in Computer Science at the Eindhoven University of
Technology, the Netherlands. Since 1997 he is employed
at Océ’s Research & Development facility in Venlo, the
Netherlands. His research interests include workflow
management, color management, XML and driver
technology. Kees Jan can be contacted by e-mail at
cso@oce.nl.

Teun Willems was born in 1975 in Heeze, the
Netherlands. He studied Computer Science and received
his bachelor degree in September 1998. Since then he
also works at Océ Research & Development in Venlo.
His interests include XML, workflow, databases, data
modeling, software architectures, Web technology and
user interface/interaction. He can be contacted by e-mail
at twil@oce.nl.

DPP2003: IS&Ts International Conference on Digital Production Printing and Industrial Applications

93

	8923
	8924
	8925
	8926
	8927
	8928
	8929
	8930
	8931
	8934
	8935
	8936
	8937
	8938
	8939
	8940
	8941
	8942
	8943
	8946
	8947
	8948
	8949
	8950
	8951
	8952
	8953
	8954
	8955
	8956
	8957
	8958
	8959
	8960
	8961
	8962
	8963
	8964
	8965
	8966
	8967
	8968
	8969
	8970
	8971
	8972
	8973
	8974
	8975
	8976
	8977
	8978
	8979
	8980
	8981
	8982
	8984
	8985
	8986
	8987
	8988
	8989
	8990
	8991
	8992
	8993
	8994
	8995
	8996
	8997
	8998
	8999
	9000
	9001
	9002
	9003
	9004
	9005
	9006
	9007
	9008
	9009
	9010
	9011
	9012
	9014
	9015
	9016
	9017
	9018
	9019
	9020
	9021
	9022
	9023
	9024
	9025
	9026
	9027
	9029
	9030

